Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1876649

ABSTRACT

Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome (ARDS) is a common severe clinical syndrome in intensive care unit, may lead to a life-threatening form of respiratory failure, resulting in high mortality up to 30–40% in most studies. Nanotechnology-mediated anti-inflammatory therapy is an emerging novel strategy for the treatment of ALI, has been demonstrated with unique advantages in solving the dilemma of ALI drug therapy. Artesunate (ART), a derivative of artemisinin, has been reported to have anti-inflammatory effects. Therefore, in the present study, we designed and synthesized PEGylated ART prodrugs and assessed whether ART prodrugs could attenuate lipopolysaccharide (LPS) induced ALI in vitro and in vivo. All treatment groups were conditioned with ART prodrugs 1 h before challenge with LPS. Significant increased inflammatory cytokines production and decreased GSH levels were observed in the LPS stimulated mouse macrophage cell line RAW264.7. Lung histopathological changes, lung W/D ratio, MPO activity and total neutrophil counts were increased in the LPS-induced murine model of ALI via nasal administration. However, these results can be reversed to some extent by treatment of ART prodrugs. The effectiveness of mPEG2k-SS-ART in inhibition of ALI induced by LPS was confirmed. In conclusion, our results demonstrated that the ART prodrugs could attenuate LPS-induced ALI effectively, and mPEG2k-SS-ART may serve as a novel strategy for treatment of inflammation induced lung injury.

2.
Zhongguo Zhong Yao Za Zhi ; 45(24): 6053-6064, 2020 Dec.
Article in Chinese | MEDLINE | ID: covidwho-1005246

ABSTRACT

Corona virus disease 2019(COVID-19) has brought untold human sufferings and economic tragedy worldwide. It causes acute myocardial injury and chronic damage of cardiovascular system, which has attracted much attention from researchers. For the immediate strategy for COVID-19, "drug repurposing" is a new opportunity for developing drugs to fight COVID-19. Artemisinin and its derivatives have a wide range of pharmacological activities. Recent studies have shown that artemisinin has clear cardiovascular protective effects. This paper summarizes the research progress on the pathogenesis the pathogenesis of COVID-19 in cardiovascular damage by 2019 novel coronavirus(2019-nCoV) virus from myocardial cell injury directly by 2019-nCoV virus,viral ligands competitively bind to ACE2 and then reduce the protective effect of ACE2 on cardiovascular disease, "cytokine storm" related myocardial damage, arrhythmia and sudden cardiac death induced by the infection and stress, myocardial injury by hypoxemia, heart damage side effects from COVID-19 drugs and summarizing the cardiovascular protective effects of artemisinin and its derivatives have activities of anti-arrhythmia, anti-myocardial ischemia, anti-atherosclerosis and plaque stabilization. Then analyzed the possible multi-pathway intervention effects of artemisinin-based drugs on multiple complications of COVID-19 based on its specific immunomodulatory effects, protective effects of tissue and organ damage and broad-spectrum antiviral effect, to provide clues for the treatment of cardiovascular complications of COVID-19, and give a new basis for the therapy of COVID-19 through "drug repurposing".


Subject(s)
Artemisinins , COVID-19 , Cardiovascular Diseases , Heart Diseases , Humans , SARS-CoV-2
3.
Future Virol ; 2020 Oct.
Article in English | MEDLINE | ID: covidwho-895275

ABSTRACT

Aim: The outbreak of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has had serious repercussions worldwide. This study was aimed to evaluate the accuracy of a new kit for detection of SARS-CoV-2 compared with similar detection kit. Materials & methods: A total of 500 subjects were included and tested with both the new test and control kits. Clinical diagnosis results were taken as the reference standard. Results: Compared with clinical diagnosis, the sensitivity of the test kit was 82.64%, specificity was 98.45% and total coincidence rate was 90.80%. The total coincidence rate, sensitivity and specificity between control kit and clinical diagnosis were 89.20%, 78.10% and 99.61%, respectively. Conclusions: The new kit was comparable to the similar detection kit for detection of SARS-CoV-2 in sensitivity, specificity and total coincidence rate.

SELECTION OF CITATIONS
SEARCH DETAIL